Least angle and l 1 penalized regression : A review ∗ †

نویسنده

  • Chris Fraley
چکیده

Least Angle Regression is a promising technique for variable selection applications, offering a nice alternative to stepwise regression. It provides an explanation for the similar behavior of LASSO (l1-penalized regression) and forward stagewise regression, and provides a fast implementation of both. The idea has caught on rapidly, and sparked a great deal of research interest. In this paper, we give an overview of Least Angle Regression and the current state of related research. AMS 2000 subject classifications: Primary 62J07; secondary 69J99.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Least Angle and L1 Regression: A Review

Least Angle Regression is a promising technique for variable selection applications, offering a nice alternative to stepwise regression. It provides an explanation for the similar behavior of LASSO (L1-penalized regression) and forward stagewise regression, and provides a fast implementation of both. The idea has caught on rapidly, and sparked a great deal of research interest. In this paper, w...

متن کامل

On the impact of model selection on predictor identification and parameter inference

We assessed the ability of several penalized regression methods for linear and logistic models to identify outcome-associated predictors and the impact of predictor selection on parameter inference for practical sample sizes. We studied effect estimates obtained directly from penalized methods (Algorithm 1), or by refitting selected predictors with standard regression (Algorithm 2). For linear ...

متن کامل

Least Angle Regression and LASSO for Large Datasets

Least-Angle Regression and the LASSO (`1-penalized regression) offer a number of advantages in variable selection applications over procedures such as stepwise or ridge regression, including prediction accuracy, stability and interpretability. We discuss formulations of these algorithms that extend to datasets in which the number of observations could be so large that it would not be possible t...

متن کامل

Penalized Bregman Divergence Estimation via Coordinate Descent

Variable selection via penalized estimation is appealing for dimension reduction. For penalized linear regression, Efron, et al. (2004) introduced the LARS algorithm. Recently, the coordinate descent (CD) algorithm was developed by Friedman, et al. (2007) for penalized linear regression and penalized logistic regression and was shown to gain computational superiority. This paper explores...

متن کامل

Penalized Estimators in Cox Regression Model

The proportional hazard Cox regression models play a key role in analyzing censored survival data. We use penalized methods in high dimensional scenarios to achieve more efficient models. This article reviews the penalized Cox regression for some frequently used penalty functions. Analysis of medical data namely ”mgus2” confirms the penalized Cox regression performs better than the cox regressi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008